Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American thank Daniel Marshall and Steven **L.** Westland, undergraduates, who did some exploratory work on eq **1** at College of DuPage and Professor **P.** Geneste (Montpellier,

France) who provided us with some unpublished data.¹⁶

Registry **No.** la, **1483-82-5;** lb, **932-87-6;** IC, **501-65-5;** Id, **536-** 3b, **81423-92-9;** 3d, **81423-93-0; (E)-4, 81423-94-1;** 5b, **55118-77-9;** 5d, **27183-55-7; 6, 201-69-4; 7, 1055-26-1; (p-methoxypheny1)propiolic** acid, 2227-57-8; SbF₅, 7783-70-2; SO₂, 7446-09-5. for the Of this research' We ***O 74-3;** 2a, **39561-64-3;** 2b, **81423-90-7;** 2c, **81423-91-8;** 24 **70445-87-3;**

Notes

Stereoselective Ketone Reductions: Reduction of *4-tert* **-Butylcyclohexanone by Alkylsilanes in the Presence of Rhodium(1) and Ruthenium(I1) Catalysts**

M. F. Semmelhack* and Raj N. Misra

Department of Chemistry, Princeton University, Princeton, New Jersey **08544**

Received June **16,** *1981*

A number of years ago, it was established that ketones undergo facile reduction by alkylsilanes to afford silyl ethers in the presence of homogeneous rhodium(1) **or** ruthenium(II) catalysts $(eq\ 1).^{1-4}$ The reaction allowed, after

hydrolysis, the overall transformation of ketones to alcohols which could not be accomplished under mild conditions with molecular hydrogen and similar soluble catalysts. $5,6$ In particular, commerically available tris(tri**phenylphosphine)rhodium(I)** chloride and to a lesser extent **tris(triphenylphosphine)ruthenium(II)** dichloride were reported to be efficient catalysts, providing silyl ethers in high yields and under mild, neutral conditions. These attractive features notwithstanding, the reaction **has** rarely been used for the reduction of ketones and aldehydes.

A brief study **of** menthone and camphor showed remarkable stereochemical control.^{1d} Bulky trialkylsilanes gave predominantly the more stable reduction product, and the mono- **or** dialkylsilanes gave predominantly the less stable reduction product. This limited set of data was suggestive of a powerful method for stereoselective re-

a Reactions were performed by using **2** mol % of tris(tri**phenylphosphine)rhodium(I)** chloride, **1.5** equiv of the alkylsilane, and **1** equiv of **4-ferf-butylcyclohexanone** in benzene solution. ^b Ratios determined by GLC analysis
of the derived alcohols after hydrolysis (catalyst *p-*TsOH[.] H,O/aqueous MeOH/25 **"C/1** h) of the crude silyl ethers. tion of the silyl enol ether. **e** Reaction was < **20%** com- plete. Toluene solvent. A major side reaction **was** the forma-

ductions, where the product configuration could be varied by choosing the appropriate silane, but it has not been pursued? Here we report an examination of the reduction of a standard test case, **4-tert-butylcyclohexanone,** using di- and trialkylsilanes in an effort to define the optimum conditions for high stereoselectivity and the variables which influence selectivity.

Results and Discussion

(A) Tris(triphenylphosphine)rhodium(I) Chloride Catalyst. The results obtained from the reduction of **4-tert-butylcyclohexanone** by various di- and trialkylsilanes in the presence of **tris(triphenylphosphine)rhodium(I)** chloride are shown in Table I. The reactions were conducted in benzene solution8 by using **1.5** molar equiv of the alkylsilane and **2** mol % of the rhodium catalyst. In general, the reductions with trialkylsilanes (entries **1-7)** required heating at 80 \degree C to obtain reasonable reaction rates. In most cases these reactions were incomplete **(60-90%** conversion), using only **2** mol % **of** the catalyst. Increasing the amount **of** catalyst to 5 mol % gave essentially complete consumption of starting ketone in the case of triethylsilane and dimethylphenylsilane. The addition

⁽¹⁾ (a) Ojima, I.; Kogure, T.; Nihonyanagi, M.; Nagai, Y. *Bull. Chem.* SOC. *Jpn.* **1972,45,** *3506.* (b) Ojima, I.; Nihonyanagi, M.; Nagai, **Y.** *J. Chem.* SOC., *Chem. Common.* **1972,938.** (c) Ojima, I.; Nihonyanagi, M.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Nakatsugawa, K.; Nagai, **Y.** *J.* Organomet. Chem. 1975, 94, 449. (d) Ojima, I., Nihonyanagi, M.; Nagai, Y. Bull. Chem. Soc. Jpn. 1972, 45, 3722.
Y. Bull. Chem. Soc. Jpn. 1972, 45, 3722.
(2) Corriu, R. J. P.; Moreau, J. J. E. J. Chem. Soc., Chem. Commun.

^{1973, 38.}

⁽³⁾ Eaborn, C.; Odell, K.; Pidcock, A. *J. Organomet.* Chem. **1973,63, 93.**

⁽⁴⁾ Reviews: (a) Nagai, Y. Org. Prep. Proced. 1980, 12, 13. (b) Ojima, I.; Yamamoto, K., Kumada, M., Aspects Homogeneous Catal. 1977, 3, 186. (c) Lukevics, E.; Belyakova, Z. V.; Pomerantseva, M. G.; Voronkov, M. G.; Organ

⁽⁶⁾ For hydrosilylations of ketones with platinum catalysts see: (a) Hayashi, T.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1972, 46, C65. (b) Hayashi, T.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1972, 46,

⁽⁷⁾ An isolated report of the hydrosilylation of 4-tert-butylcyclo- hexanone by a rhodium catalyst has appeared although the stereochemistry of the product is not clear; see: Bottrill, M.; Green, M. *J. Orgam*met. Chem. **1976,111,** C6.

⁽⁸⁾ Ojima's work generally **waa** performed without solvent.

of polar solvents (e.g., 10% acetonitrile or nitromethane) gave slow reaction **(<5%** after 24 h at 80 "C) with triethylsilane. The reaction also proceeded slowly in 10% THF/benzene at 80 **"C** to give an axial/equatorial preference of 20:80 with triethylsilane. In contrast, the reductions with dialkylsilanes were rapid at 25 "C in benzene.

There is a definite *trend* in the stereoselectivity of the reduction as a function of steric bulk of the alkylsilane. Unfortunately the effect was not as dramatic as in the menthone example previously reported.^{1d} Under optimum conditions the axial/equatorial preference varied from **57:43** with diphenylsilane to 11:89 with triethylsilane. The isolated yields of the silyl ethers with triethylsilane and diethylsilane were 92% and 97%, respectively (see Experimental Section).

Higher temperatures favored the more stable product, perhaps due to thermodynamic control through rapid equilibration. Control experiments, however, indicate the product silyl ethers **3a** and **3b** do not undergo equilibration when independently subjected to the reaction conditions. An alternate route for equilibration involves intermediate alkylrhodium species **(la,b9** (Scheme I) which can undergo reversible β -hydride elimination and subsequent equilibration via silyl enol ether **2.1°** Labeling studies involving the reduction of **2,2,6,6-tetradeuterio-4-tert-butylcyclo**hexanone with triethylsilane, however, indicated no proton incorporation β to the silvloxy group in the product silyl ether. The complementary experiment involving the reduction of **4-tert-butylcyclohexanone** with triethylsilyl deuteride indicated no deuterium incorporation β to the silyloxy group in the product. In addition, attempted hydrogenation of silyl enol ether **2** with tris(tripheny1 phosphine)rhodium(I) chloride under the reaction conditions afforded only starting silyl enol ether **2.** Thus it appears that if equilibration is occurring, intermediate **2** is not involved.

(B) Tris (trip henylphosphine) r ut henium (11) Dichloride Catalyst. The results obtained from the reduction of **4-tert-butylcyclohexanone** by various di- and trialkylsilanes in the presence of **2** mol% of tris(tri-

Table 11. Ru(11)-Catalyzed Hydrosilylation **of 4-tert-Butylcyclohexanonea**

entry	silane	time. h	Ax/Eq ratio ^b
	Et , SiH		08:92
2	Et, SiH	20	$05:95^c$
3	Ph,SiH	24	07:93
4	PhMe, SiH	10	12:88
5	Et ₂ SiH ₂	12	41:59
6	Ph, SiH,	12	49:51

phenylphosphine)ruthenium(11) dichloride and 1.5 molar equiv of the alkylsilane relative to 4-tert-butylcyclohexanone in benzene at 80 °C. b Ratios determined by GLC analysis of the derived alcohols from hydrolysis (p-toluenesulfonic acid hydrate/MeOH/25 "C/1 h) of the crude silyl ethers. c Reaction was performed in toluene at 110 °C with 2 mol % of silver trifluoroacetate added. **a** Reactions were performed by using 2 mol % of tris(tri-

phenylphosphine)ruthenium(II) dichloride are shown in Table 11. The reactions were conducted under conditions similar to those for the rhodium-catalyzed reductions; however, longer reaction times and heating to 80 °C were necessary in all cases, including the dialkylsilanes. In general, the reactions proceeded only to $40-60\%$ completion. Again a similar trend in stereoselectivity was observed as a function of steric bulk of the alkylsilane. Despite the sluggish nature of the reduction, excellent yields were achieved with triethylsilane by increasing the amount of catalyst to 5 mol %, adding **5** mol % of silver trifluoroacetate, and heating to 110 $\rm{^{\circ}C}$ in toluene. Thus the silyl ether was obtained in 96% yield, and the axial/equatorial preference was 5:95 (see Experimental Section). The stereoselectivity represents an improvement on the analogous rhodium-catalyzed reduction and is comparable to the more widely used lithium aluminum hydride reduction which has been reported to afford axial/equatorial ratios of $11:89^{11a}$ to $4:96.^{11b}$

In summary, **4-tert-butylcyclohexanone** undergoes reduction with triethylsilane in high yield to provide predominantly the more stable equatorial silyl ether in the presence of **tris(triphenylphosphine)rhodium(I)** chloride or **tris(triphenylphosphine)ruthenium(II)** dichloride/silver

⁽⁹⁾ This type of alkylrhodium intermediate has been proposed by

 (10) Silyl enol ethers have been observed as byproducts in the reduction of aromatic ketones (see ref 2 and 3).

^{(11) (}a) Brown, H. C.; Deck, H. R. J. Am. Chem. *SOC.* 1965,87,5620. 5620. (b) Lansbury, P. T.; MacLeay, R. E. *J. Org.* Chem. 1963,28,1940.

trifluoroacetate. An axial/equatorial preference of 5:95 was achieved.

Experimental Section

General Met hods. Reactions were conducted under argon in a **25mL** two-necked **flask** fitted with **a** rubber septum. Liquids were distilled from sodium/benzophenone ketyl; tris(triphenylphosphine)rhodium(I) chloride and **tris(tripeny1phosphine)ru**thenium(I1) dichloride were obtained from Alfa, Danvers, MA; alkylsilanes were obtained from Petrarch Systems, Bristol PA, and used without purification. An authentic mixture of cis- and **trans-4-tert-butylcyclohexanol** for GLC comparison was prepared by lithium aluminum hydride reduction of 4-tert-butylcyclohexanone in ether.¹¹ Triethylsilyl deuteride¹² and 2,2,6,6-tetra**deuterio-4-tert-butylcyclohexanone13** were prepared by literature methods.

GLC analyses were obtained on **a** Perkin-Elmer **3920** gas chromatograph fitted with a flame-ionization detector. Separations were provided by a 6 ft \times ¹/₈ in., 5% 2:1 FFAP/Bentone aluminum column.

Triethylsilane/Rhodium(I)-Catalyzed Reduction. To an orange homogeneous solution of **154** mg **(1.00** mmol) of 4-tertbutylcyclohexanone and **45** mg **(0.050** mmol) of tris(tripheny1 phosphine)rhodium(I) chloride in **5.0** mL of benzene was added 0.24 mL (1.5 mmol) of triethylsilane. The reaction mixture turned yellow and was heated at reflux for **1** h. The resulting deep red solution was concentrated by rotary evaporation. The residual oil was diluted with **5** mL of hexane, filtered, concentrated, and chromatographed on silica gel **(3%** ether-hexane) to afford **249** mg **(92** %) of **cis,trans-[(4-tert-butylcyclohexyl)oxy]triethylsilane** as a colorless liquid: IR (film) 2945, 1453, 1365, 1237, 1090, 1009, **843, 745 cm⁻¹; ¹H NMR (CCl₄)** δ **0.45-2.1 (br,** \sim **q at 0.65,** *J* **= 7** Hz, and s at 0.85, 33 H), 3.45 (br s, \sim 1 H); mass spectrum, m/e (relative intensity) **270** (M+, **l), 242 (22), 241 (loo), 137 (23), 103** (93), 87 (11), 81 (16), 75 (66); exact mass calcd for C₁₆H₃₄OSi m/e **270.2379,** found **270.2381;** GLC analysis, two major peaks **(97%** of total peak area) in an area ratio of **11239,** corresponding to the axial/equatorial isomers, respectively.

Diethylsilane/Rhodium(I)-Catalyzed Reduction. To an orange solution of **154** mg **(1.00** mmol) of 4-tert-butylcyclohexanone and **9.0** mg **(0.010** mmol) of **tris(tripheny1phosphine)** rhodium(1) chloride in **5.0** mL of benzene was added dropwise **0.15** mL **(1.1** mmol) of diethylsilane. The reaction was mildly exothermic and turned yellow. After **15** min the solution was concentrated by rotary evaporation, and the residual oil was diluted with **3** mL of hexane. The resulting slurry was filtered, concentrated, and evaporatively distilled **[SO** "C **(0.10** torr)] to afford **235** mg **(97%)** of cis,trans-[**(4-tert-butylcyclohexyl)oxy]** diethylsilane as a colorless low melting solid: IR (film) 2960, 2102, **1463,1371,1240,1090,1057,1012,861,830** cm-'; 'H NMR (CC14) **6 0.60-2.4** (br, with s at **0.87, 28** H), **3.45** (br s, **0.5** H), **3.97** (m, **0.5** H), **4.38** (m, **1** H); mass spectrum m/e (relative intensity) **242** (m', **15), 213 (58), 177 (17), 143 (49), 138 (73), 137 (54), 123 (58), 99 (59), 83 (65), 82 (77), 81 (loo),** *80* **(61), 75 (48);** exact mass calcd for C₁₄H₃₀OSi m/e 242.2066, found 242.2054; GLC analysis, two major peaks **(99%** of total peak area) in a **47:53** area ratio cor- responding to the axial/equatorial isomers, respectively.

Triethylsilane/Ruthenium(II)-Catalyzed Reduction. To a solution of **154** mg **(1.00** mmol) of **4-tert-butylcyclohexanone, 48** mg **(0.05** mmol) of **tris(triphenylphosphine)ruthenium(II)** dichloride, and 11 mg (0.05 mmol) of silver trifluoroacetate¹⁴ in **5.0 mL** of toluene was added **0.24 mL (1.5** mmol) of triethylsilane. The reaction mixture was heated at reflux and turned purple after several min. After **20** h at reflux, the solution was concentrated by rotary evaporation, diluted with **3** mL of hexane, filtered, concentrated, and evaporatively distilled **[70** "C **(0.10** torr)] to yield **260** mg **(96%) of cis,trans-[(4-tert-butylcyclohexyl)oxy]** triethylsilane **as** a colorless liquid. GLC analysis: two major **peaks**

General Procedure for Hydrolysis of Silyl Ethers. A solution of the crude silyl ether and a few crystals of p-toluenesulfonic acid hydrate in **5** mL of **10%** aqueous methanol was stirred at 25 °C for 1 h. An aliquot was removed for GLC analysis.

Registry No. 3a $(R_3 = Et_3)$, 81256-40-8; 3a $(R_3 = Et_2, H)$, **81256-41-9;** $3a (R_3 = Ph_3)$ **, 81256-42-0;** $3a (R_3 = Me_2, Ph)$ **, 81256-43-1; 3a** $(R_3 = 0E_t)$, **81256-44-2; 3a** $(R_3 = C_s)$, **81256-45-3; 3a** $(R_3 = Ph_2)$, **48-6; 3b** $(R_3 = Ph_3)$, **81256-49-7; 3b** $(R_3 = Me_2, Ph)$, **81256-50-0; 3b** $(R_3 = OEt_3)$, **81278-81-1; 3b** $(R_3 = Cl_3)$, **81256-51-1; 3b** $(R_3 = Ph_2, H)$, 81256-52-2; Et₃SiH, 617-86-7; Et₂SiH₂, 542-91-6; Ph₃SiH, 789-25-3; PhMe₂SiH, 766-77-8; $(EtO)_3$ SiH, 998-30-1; Cl_3 SiH, 10025-78-2; PhzSiH2, **775-12-2; 4-tert-butylcyclohexanone, 98-53-3;** tris(tri**phenylphosphine)rhodium(I)** chloride, **14694-95-2;** tris(tripheny1 phosphine)ruthenium(II) dichloride, **15529-49-4.** H), **81256-46-4; 3b** (R3 = Et3), **81256-47-5; 3b** (R3 = Etz, H), **81256-**

Conversion of 2,4,6-Trinitrobenzyl Chloride to 2,2',4,4',6,6'-Hexanitrostilbene by Nitrogen Bases

Gilbert P. Sollott

Chemistry Branch, Energetic Materials Division, *US.* Army Armament Research and Development Command, Dover, New Jersey *07801*

Received November *3, 1981*

In Shipp and Kaplan's report of the remarkably facile preparation of **2,2',4,4',6,6'-hexanitrostilbene** (HNS) from 2,4,6-trinitrotoluene (TNT) and alkaline hypochlorite, it was disclosed that 2,4,6-trinitrobenzyl chloride (TNBzC1) is obtainable in 85% crude yield by quenching the reaction after only 1 min, and is converted to HNS by reaction with sodium hydroxide.¹ The sequence in eq 1 and 2 was

$$
\text{PiCH}_{3} \xrightarrow{\text{OH}^{-}} \text{PiCH}_{2} \xrightarrow{\text{[Cl}^{+}} \text{PiCH}_{2} \text{Cl}
$$
\n
$$
\text{TNT} \qquad (1)
$$

 $PicH_2Cl \longrightarrow PicHCl \longrightarrow PicH_2Cl \longrightarrow PicCl \rightarrow PicCl \rightarrow PicCl \rightarrow PicCH_2Cl \longrightarrow PicCH_2Cl \rightarrow PicCH$ TNBzCl PiCH=CHPi (2)

$$
Pi = picryl = 2,4,6-trinitrophenyl
$$

suggested to account for these transformations. HNS was reportedly obtained in yields up to **50%** from TNBZCl and up to 42% from TNT. The yields cited, however, included coprecipitated byproducts, largely **2,2',4,4',6,6'-hexanitro**bibenzyl, which are removable by washing with acetone. On attempting to duplicate the crude HNS yield of 50% using TNBzCl and sodium hydroxide in the prescribed mole ratio of $1²$ we obtained a 46% yield. This was reduced to 40% on washing with acetone.³

We report here that HNS *can* be obtained from TNBzCl in substantially improved yields by using certain nitrogen bases in place of sodium hydroxide. Bases in the pK_B range of 2.8-8.8 have been examined and are listed in Table I together with the yields of HNS obtained from

⁽¹²⁾ Doyle, M. P.; McOsker, C. C.; West, C. T. *J. Org. Chem.* 1975, 41, **1393.**

⁽¹³⁾ Geneste, P.; Lamaty, **G.** Bull. SOC. *Chim. Fr.* **1968, 669. (14)** Janssen, D. E.; Wilson, C. V. "Organic Syntheses"; Rabjohn, N., Ed.; Wiley: New York, **1963,** Collect. Vol. IV, p **547.**

⁽¹⁾ Shipp, K. G.; Kaplan, L. A. *J.* Org. *Chem.* **1966, 31, 857.**

⁽²⁾ No HNS is obtained when the NaOH/TNBzCl molar ratio equals

^{2.&#}x27; (3) The yield on starting with TNT and alkaline hypochlorite was similarly decreased from **42%** to **37%.**

^{(4) (}a) Dean, J. A., Ed. "Lange's Handbook of Chemistry", 12th ed.;
McGraw-Hill: New York, 1979; p 5–14. (b) Hall, J. L.; Fisher, J. F. *Proc.*
W. Va. Acad. Sci. 1962, 34, 85; Chem. Abstr. 1963, 59, 3748d. (c) "CRC Handbook of Chemistry and Physics", 60th ed.; CRC Press: Boca Raton, FL, **1979; p** D-161.